On the revised edge-Szeged index of graphs

Authors

  • Hechao Liu School of Mathematics and Statistics, Hunan Normal University, Changsha City, Hunan Province, China
  • Lihua You School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China
  • Zikai Tang School of Mathematics and Statistics, Hunan Normal University, Changsha City, Hunan Province, China
Abstract:

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of edges of G lying closer to vertex v than to vertex u, and the number of edges equidistant to u and v. In this paper, we give an effective method for computing the revised edge-Szeged index of unicyclic graphs and using this result we identify the minimum revised edge-Szeged index of conjugated unicyclic graphs (i.e., unicyclic graphs with a perfect matching). We also give a method of calculating revised edge-Szeged index of the joint graph.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Revised Szeged Index of Product Graphs

The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...

full text

Bicyclic graphs with maximal revised Szeged index

e=uv∈E(nu(e)+n0(e)/2)(nv(e)+n0(e)/2), where nu(e) and nv(e) are, respectively, the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, and n0(e) is the number of vertices equidistant to u and v. Hansen used the AutoGraphiX and made the following conjecture about the revised Szeged index for a connected bicy...

full text

Edge Szeged Index of Unicyclic Graphs

The edge Szeged index of a connected graph G is defined as the sum of products mu(e|G)mv(e|G) over all edges e = uv of G, where mu(e|G) is the number of edges whose distance to vertex u is smaller than the distance to vertex v, and mv(e|G) is the number of edges whose distance to vertex v is smaller than the distance to vertex u. In this paper, we determine the n-vertex unicyclic graphs with th...

full text

Computing Szeged index of graphs on ‎triples

ABSTRACT Let ‎G=(V,E) ‎be a‎ ‎simple ‎connected ‎graph ‎with ‎vertex ‎set ‎V‎‎‎ ‎and ‎edge ‎set ‎‎‎E. ‎The Szeged index ‎of ‎‎G is defined by ‎ where ‎ respectively ‎ ‎ is the number of vertices of ‎G ‎closer to ‎u‎ (‎‎respectively v)‎ ‎‎than ‎‎‎v (‎‎respectively u‎).‎ ‎‎If ‎‎‎‎S ‎is a‎ ‎set ‎of ‎size‎ ‎ ‎ ‎let ‎‎V ‎be ‎the ‎set ‎of ‎all ‎subsets ‎of ‎‎S ‎of ‎size ‎3. ‎Then ‎we ‎define ‎t...

full text

The Normalized Revised Szeged Index

In chemical graph theory, many graph parameters, or topological indices, were proposed as estimators of molecular structural properties. Often several variants of an index are considered. The aim is to extend the original concept to larger families of graphs than initially considered, or to make it more precise and discriminant, or yet to make its range of values similar to that of another inde...

full text

A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  279- 293

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023